
ar
X

iv
:1

50
8.

03
09

6v
2

 [c
s.

C
R

]
3

S
ep

 2
01

5

Deep Neural Network Based Malware Detection Using Two Dimensional
Binary Program Features

Joshua Saxe∗

Invincea Labs, LLC
josh.saxe@invincea.com

Konstantin Berlin∗

Invincea Labs, LLC
kberlin@invincea.com

Abstract

Malware remains a serious problem for corpora-
tions, government agencies, and individuals, as attack-
ers continue to use it as a tool to effect frequent and
costly network intrusions. Today malware detection
is still done mainly with heuristic and signature-based
methods that struggle to keep up with malware evolu-
tion. Machine learning holds the promise of automating
the work required to detect newly discovered malware
families, and could potentially learn generalizations
about malware and benign software (benignware) that
support the detection of entirely new, unknown malware
families. Unfortunately, few proposed machine learn-
ing based malware detection methods have achieved the
low false positive rates and high scalability required to
deliver deployable detectors.

In this paper we introduce an approach that ad-
dresses these issues, describing in reproducible detail
the deep neural network based malware detection sys-
tem that Invincea has developed. Our system achieves
a usable detection rate at an extremely low false posi-
tive rate and scales to real world training example vol-
umes on commodity hardware. Specifically, we show
that our system achieves a 95% detection rate at 0.1%
false positive rate (FPR), based on more than 400,000
software binaries sourced directly from our customers
and internal malware databases. We achieve these re-
sults by directly learning on all binaries, without any
filtering, unpacking, or manually separating binary files
into categories. Further, we confirm our false positive
rates directly on a live stream of files coming in from
Invincea’s deployed endpoint solution, provide an esti-
mate of how many new binary files we expected to see
a day on an enterprise network, and describe how that
relates to the false positive rate and translates into an
intuitive threat score.

Our results demonstrate that it is now feasible to
quickly train and deploy a low resource, highly accurate

∗Authors contributed equally to the work.

machine learning classification model, with false posi-
tive rates that approach traditional labor intensive sig-
nature based methods, while also detecting previously
unseen malware. Since machine learning models tend
to improve with larger data-sizes, we foresee deep neu-
ral network classification models gaining in importance
as part of a layered network defense strategy in coming
years.

1. Introduction

Malware continues to facilitate crime, espionage,
and other unwanted activities on our computer net-
works, as attackers use malware as a key tool their cam-
paigns . One problem in computer security is therefore
to detect malware, so that it can be stopped before it
can achieve its objectives, or at least so that it can be
expunged once it has been discovered.

In this vein, various categories of detection ap-
proaches have been proposed, including, on the one
hand, rule or signature based approaches, which require
analysts to hand craft rules that reason over relevant data
to make detections, and, on the other hand, machine
learning approaches, which automatically reason about
malicious and benign data to fit detection model param-
eters. A middle path between these two methods is the
automatic generation of signatures. To date, the com-
puter security industry, to our knowledge, has favored
manual and automatically created rules and signatures
over machine learning and statistical methods, because
of the low false positive rates achievable by rule and
signature-based methods.

In recent years, however, a confluence of three
developments have increased the possibility for suc-
cess in machine-learning based approaches, holding the
promise that these methods might achieve high detec-
tion rates at low false positive rates without the bur-
den of human signature generation required by manual

http://arxiv.org/abs/1508.03096v2

methods.
The first of these trends is the rise of commer-

cial threat intelligence feeds that provide large vol-
umes of new malware, meaning that for the first time,
timely, labeled malware data are available to the secu-
rity community. The second trend is that computing
power has become cheaper, meaning that researchers
can more rapidly iterate on malware detection machine
learning models and fit larger and more complex mod-
els to data. Third, machine learning as a discipline
has evolved, meaning that researchers have more tools
at their disposal to craft detection models that achieve
breakthrough performance in terms of both accuracy
and scalability.

In this paper we introduce an approach that takes
advantage of all three of these trends: a deployable deep
neural network based malware detector using static fea-
tures that gives what we believe to be the best reported
accuracy results of any previously published detection
engine.

The structure of the rest of this paper is as follows.
In Section 2 we describe our approach, giving a descrip-
tion of our feature extraction methods, our deep neural
network, and our Bayesian calibration model. In Sec-
tion 3 we provide multiple validations of our approach.
Section 4 treats related work, surveying relevant mal-
ware detection research and comparing our results to
other proposed methods. Finally, Section 5 concludes
the paper, reiterating our findings and discussing plans
for future work.

2. Method

Our full classification framework, shown in Fig. 1,
consists of three main components. The first compo-
nent extracts four different types of complementary fea-
tures from the static benign and malicious binaries. The
second component is our deep neural network classifier
which consists of an input layer, two hidden layers and
an output layer. The final component is our score cal-
ibrator, which translates the outputs of the neural net-
work to a score that can be realistically interpreted as
approximating the probability that the file is actually
malware. In the remainder of this section we describe
each of these model components in detail.

2.1. Feature Engineering

2.1.1. Byte/Entropy Histogram Features.The first
set of features that we compute for input binaries are the
bin values of a two-dimensional byte entropy histogram
that models the file’s distribution of bytes.

To extract the byte entropy histogram, we slide a

1. Feature extraction

Contextual byte

features
PE import features

String 2d histogram

features

PE metadata

features

Input layer, 1024 input features

Hidden layer, 1024 PReLU units

Hidden layer, 1024 PReLU units

Output layer, 1 sigmoid unit

Non-parametric score distribution estimation

2. Deep neural network

3. Score calibration model

Bayesian estimation of P(malware)

Figure 1. Outline of our malware classification
framework.

1024 byte window over an input binary, with a step size
of 256 bytes. For each window, we compute the base-2
entropy of the window, and each individual byte occur-
rence in the window (1024 non-unique values) with this
computed entropy value, storing the 1024 pairs in a list.

Finally, we compute a two-dimensional histogram
over the pair list, where the histogram entropy axis has
sixteen evenly sized bins over the range[0,8], and the
byte axis has sixteen evenly sized bins over the range
[0,255]. To obtain a feature vector (rather than the ma-
trix), we concatenate each row vector in this histogram
into a single, 256-value vector.

Our intuition in using these features is to model the
contents of input files in a file-format agnostic way. We
have found that in practice, the effect of representing
byte values in the entropy “context” in which they occur
separates byte values that occur in the context of, for
example, x86 instruction data from, for example, byte
values occurring in compressed data.

2.1.2. PE Import Features. The second set of features
that we compute for input binaries are derived from the
input binary’s import address table. We initialize an ar-
ray of 256 integers to zero; extract the import address
table from the binary program; hash each tuple of DLL
name and import function into the range[0,255]; and
increment the associated counter in our feature array.

Our intuition is that import table DLLs may help
our model to capture the semantics of the external func-
tion calls that a given input binary relies upon, thereby
detecting either heuristically suspicious files or files
with a combination of imports that match a known mal-
ware family. By hashing the potentially large number
of imported functions into a small array, we ensure that

our feature space remains fixed-size, which is important
for scalability. In practice we find that even with a 256
valued hash function our neural network learns a mean-
ingful separation between malware and benignware, as
shown later in our evaluation.

2.1.3. PE Metadata Features.The final set of fea-
tures are derived from the numerical fields extracted
from target binary’s portable executable (PE) packag-
ing. The portable executable format is the standard for-
mat for executables on Windows-family operating sys-
tems. To extract these features we extract numerical
portable executable fields from the binary using the us-
ing “pefile” Python parsing library. Each of these fields
has a textual name (e.g., “compiletimestamp”), which,
similar to the import table, we aggregate into 256-length
array.

Our motivation for extracting these features is to
give our model the opportunity to identify both heuris-
tically suspicious aspects of a given binary program’s
packaging, and allow it to learn signatures that capture
individual malware families.

2.1.4. Aggregation of Feature Types.To construct
our final feature vector, we take the four 256-
dimensional feature vectors described above and con-
catenate them into a single, 1024-dimensional feature
vector. We found, throughout the course of our re-
search, that this reduction of data intoa priori fixed
sized small vector resulted in only a minor degradation
in the accuracy of our model, and allowed us to dra-
matically reduce the memory and CPU time necessary
to load and train our model, as compared to the more
common approach of assigning each categorical value
to its own column in the feature vector.

2.1.5. Labeling. To train and evaluate our model at
low false positive rates, we require accurate labels for
our malware and benignware binaries. We accomplish
this by running all of our data through VirusTotal, which
runs the binaries through approximately 55 malware en-
gines.We then use a voting strategy to decide if each file
is either malware or benignware.

Similar to [?], we label any file against which 30%
or more of the anti-virus engines alarm as malware, and
any file that no anti-virus engine alarms on as benign-
ware. For the purposes of both training and accuracy
evaluation we discard any files that more than 0% and
less than 30% of VirusTotal’s anti-virus engines declare
it malware, given the uncertainty surrounding the na-
ture of these files. Note that we do not filter our binary
files based on any actual content, as this could bias our
results.

2.2. Neural Network

For classification, we use a deep feedforward neu-
ral network consisting of four layers, where the first
three 1024 node layers consist of a dropout [30], fol-
lowed by a dense layer with either, a parametric recti-
fied linear unit (PReLU) activation function [18] in the
first two layers, or the sigmoid function, in the last hid-
den layer (the fourth layer being the prediction). We
elaborate on the reasoning behind these choices below.

2.2.1. Design.First, our choice of using deep neural
network, rather than a shallow but wide neural network,
is based on the developed understanding that deep ar-
chitectures can be more efficient (in terms of number
of fitting parameters) than shallow network [8]. This is
important in our case, since the number of binary sam-
ples in our dataset is still relatively small, as compared
to all the possible binaries that can observed on a large
enterprise network, and so our sampling of the feature
space is limited. Our goal was to increase expressive-
ness of the network, while maintaining a tractable size
network that can be quickly trained on a single Ama-
zon EC2 node. Given our four layer neural network de-
sign, the remaining design choices are meant to address
overfitting and improve efficacy of the backpropagation
algorithm.

2.2.2. Preventing Overfitting. Dropout has been
demonstrated to be a very simple and efficient approach
for preventing overfitting in deep neural network.
Unlike standard weight regularizers, such as based on
theℓ1 or ℓ2 norms, that push the weights toward some
expected prior distribution [15], dropout seeks weights
at each node that are complementary to weights in
other nodes. The dropout solution is potentially more
resilient to imperfect or dirty data (which is common
when extracting features from similar malware that was
compiled or packed using different software), since it
discourages co-adaptation by creating multiple paths
to correct classification throughout the network. This
can be viewed as implicit bagging of several neural
network models [30].

2.2.3. Speeding Up Learning.Rectified linear units
(ReLU) have been shown to significantly speedup net-
work training over traditional sigmoidal activation func-
tions, such as tanh [25], by avoiding significant de-
cay in gradient descent convergence rate after an ini-
tial set of iterations. This slowdown is due to saturat-
ing non-linearities in sigmoidal functions at their edges
[25, 27, 18]. Using ReLU activation functions can also
lead to bad performance when the input values are be-
low 0, and PReLU activator functions are made to dy-

namically adjust in order to avoid this issue, thus yield-
ing significantly improved convergence rate [18].

Initialization of weights, before training, can sig-
nificantly impact the convergence of the backpropaga-
tion algorithm [17, 18]. The goal of a good initializa-
tion is to avoid multiplicative impact of weight aggre-
gation from multiple layers during backpropagation. In
our approach we use the Gaussian distribution that is
normalized based on the size of the input and output of
the layers, as suggested in [17]. Before doing this ini-
tialization we transform our feature values by applying
the base-10 logarithm to each feature value, which we
found in practice improved training performance sub-
stantially.

2.2.4. Formal Description. Let l = {0,1,2,3} be a
layer in the network,y(l−1) the incoming values into
the layer (forl = 1 those are the feature values),y(l) the
output values of the layer,W(l) the weights of the layer
that linearly transformsn input values intomoutput val-
ues,bl the bias, andF (l) the associated activation vector
function. The equation forl = {1,2,3} of the network
is

d(l) = y(l−1) · r (l),

z(l) = W(l)d(l)+b(l),

y(l) = F(z(l)),

(1)

where · is a pointwise (elementwise) vector product,
andr i are independent samples from a Bernoulli distri-
bution with parameterh. Ther values are resampled for
each batch update during training, andh corresponds to
the fraction of nodes that are kept during each batch up-
date [30]. Layerl = 0 is the input layer, andl = 4 is the
output layer.

For layersl = {1,2}, the activation function is the
PReLU function,

F(z(l)i) = (y(l)1 , . . . ,y(l)i , . . . ,y(l)m) (2)

where for some additional parametera(l)i that is also fit
during training,

y(l)i =

{

a(l)i z(l)i if z(l)i < 0,

z(l)i else.
(3)

For the final layerl = 3, the activation function is the
sigmoid function,

y∗ =
1

1+e−z(3)
, (4)

which produces the output of our model.
The loss for eachn sized batch sample is evaluated

as the sum of the cross-entropy between the neural net’s

prediction and the true label,

L(y∗, ŷ) =−
n

∑
j=1

[

ŷ j logy∗j +(1− ŷ j) log(1− y∗j)
]

(5)

wherey∗ is the output of our model for alln batch sam-
ples,y∗j is the output for samplej, andŷ j ∈ {0,1} is the
true label of the samplej, with 0 representing benign-
ware and 1 malware.

The neural network is training using backpropaga-
tion and the Adam gradient-based optimizer [24], which
we observed to converge significantly faster than the
standard stochastic gradient descent.

2.3. Bayesian Calibration

Beyond simply detecting malware in a binary sense
our system also seeks to provide users with accurate
probabilities that a given file is malware. We do this
through a Bayesian model calibration approach which
combines our empirical belief about the ”riskiness” of
a given customer network (represented as our belief
about the ratio of malware to benignware on the cus-
tomer’s network) and empirical information about our
neural network’s error profile against test data. Here
describe our specific approach for adjusting the clas-
sifier’s “probability” score to reflect the true “threat”
score, given this qualitatively assumed ratio of malware
to benignware.

Let 0≤ s≤ 1 be some score given by the classi-
fier, reflecting the degree to which a classifier believes
an observed binary is malware, with 0 being completely
benign, and 1 being certainly malware. Our goal is to
translate this number into a “threat” score, which will
give the user a measure of how likely that the observed
binary is actually malware. In line with this intuition,
we define the threat score as the probability that the file
will actually be malware, P(C = m|S= s), given the
scores, and categoryC = {m,b}. We will use capital
P for probability, and the little p to represent probability
density function (pdf), and for brevity drop the equality
sign.

Lets assume we have a pdfs for the benign and mal-
ware scores for a given classifier, p(S= s|C = m) and
p(S= s|C= b). We will describe in the next section how
we derive these pdfs from observed test data. Given a
base rater, the ratio of malware to benignware, we will
not derive how to compute the threat score. This will be
done in two steps: i) we express our problem in terms
of our classifier’s expected pdf for benign and malware
predictions, and ii) we demonstrate how to practically
compute these pdfs.

2.3.1. Threat Score.Using Bayes’ rule we have

P(m|s) =
p(s|m)P(m)

p(s)
. (6)

Rewriting p(s) as the sum of probabilities over the two
possible labels, we get

P(m|s) =
p(s|m)P(m)

p(s|m)P(m)+p(s|b)P(b)
. (7)

Finally, using the constraint that probabilities add
up to 1, gives us the final value of the threat score
in terms of pdfs and probability of observing malware
(malware base rate) ,

P(m|s) =
p(s|m)P(m)

p(s|m)P(m)+p(s|b)(1−P(m))
. (8)

2.3.2. Probability Density Function Estimation.
Given the above definition of the threat score, we need
to derive the pdfs p(s|m) and p(s|b). There are two ap-
proaches that are commonly used: i) the parametric ap-
proach, where we assume some distribution for the pdfs,
and fit the parameters of that distribution based on the
observed samples, and ii) the non-parametric approach,
like kernel density estimator (KDE), where we approx-
imation a value of pdf givenC by taking a weighted
average of the neighborhood.

Since it is not reasonable to expect the output of our
ML classifier to follow some standard distribution, we
used KDE with the Epanechnikov kernel [12]. In our
testing it had better validation score than the standard
Gaussian kernel. Since the pdfs can only take values in
[0,1], we mirrored our samples to the left of 0 and the
right of 1, before computing the estimated pdf value at
a specific point. The window size was set empirically to
0.01 to better approximate the tail end of distributions,
were samples are less dense.

3. Evaluation

We evaluated our system in two ways. First, we
used our in-house database of malicious and benign bi-
naries to conduct a set of cross-validation experiments
testing how well our system performs using the indi-
vidual feature sets described above and the agglomer-
ation of the feature sets described above. Second, we
used a live feed of binaries from Invincea customer net-
works, in conjunction with a live feed of malicious bina-
ries from the Jotti subscription threat intelligence feed,
to measure the accuracy of our system in deployment
contexts using all feature sets.

All our experiments were ran on Amazon EC2
g2.8xlarge instance, which has 60GB of RAM, and four

1,536 CUDA core graphical processing units, of which
we only used one. The software uses the Keras v0.1.1
deep learning library to implement the neural network
model described above. The feature extraction is mostly
written in Cython and Python, heavily relying on SciPy
and NumPy libraries, and each sample’s features are ex-
tracted by a single thread process. Below we describe
each of these evaluations in detail, starting with a de-
scription of our evaluation datasets and then moving on
to descriptions of our methodology and results.

3.1. Dataset

Our benign and malware binaries were drawn from
Invincea’s own computer systems and Invincea’s cus-
tomers networks. We used malicious binaries obtained
from both the Jotti commercial malware feed and from
Invincea’s private malware database. Our final dataset,
after VirusTotal filtering, contains 431,926 binaries,
with 81,910 labeled as benignware and 350,016 as mal-
ware. Fig. 2 shows counts for the top malware fami-
lies, as identified by the Kaspersky anti-virus engine, in
our malware dataset. Fig. 3 gives a histogram over the
compile timestamps of both the malicious and benign
binaries in our dataset.

Not all malware binaries discovered by the secu-
rity community are shared publicly, or as part of threat
intelligence feeds, and the distribution of malware bina-
ries that a specific enterprise network might experience
could differ somewhat from our dataset. However, it
significantly more critical is to have an accurate distri-
bution of the benign files that reflects real usage, since
that is what will drive the critical FPR estimation. Since
the primary source of benign data comes directly from
Invincea’s clients, we believe it is one the most accu-
rate representations of the true distribution that has been
evaluation. In our validation we confirm that our ROC
curve FPR estimates match closely the live stream FPR
(under the assumption that Invincea’s endpoint stream
contains little to no malware).

3.2. Cross-Validation Experiment

We conducted five separate 4-fold cross-validation
experiments, where for each experiment we randomly
split our data into four equally sized partitions. For each
of the four partitions, we trained against three partitions
and tested against the fourth.

The first set of cross-validation experiments mea-
sured our system’s individual accuracy of each of the
four feature types described in Section 2.1. For these
experiments we reduced the size of the neural network
input layer to 256 and training our network for 200

D. E. F.

B.A. C.
T

ru
e

 p
o

s
it
iv

e
 r

a
te

T
ru

e
 p

o
s
it
iv

e
 r

a
te

False positive rate False positive rate False positive rate

Figure 4. Six experiments showing the accuracy of our approa ch for different combination of feature
types. For each experiment we show a set of solid lines, which are the ROC of the individual cross-
validation folds, and a dotted line is the averaged value of t hese ROC curves. A. all four feature
types; B. only PE import features; C. only byte/entropy feat ures; D. only metadata features; E. only
string features; F. all features after we train only on the sa mples whose compile timestamp is before
July 31st, 2014 and test on samples whose compile timestamp i s after July 31st, 2014, excluding
samples with blatantly forged compile timestamps.

epochs or until training error falls below 0.02 for each
fold. Our fifth experiment was conducted in the same
way, but included all of our features and used the 1024
neurons input layer. The results of these validations are
shown in Fig. 4 A, B,C, D, and E, and is also summa-
rized in Table 1. These validation results show there
is significant variation in how each of our feature sets
performs. Using all of the features together produced
the best results, with an average of 95.2% of malicious
binaries not seen in training detected at a 0.1% false
positive rate, with area under the roc (AUC) of 0.99964.
Fig. 5 shows that our ROC improves with the number of
epochs, and we are not suffering from overfitting. For
our full dataset, it takes approximately 15 seconds to
train one epoch using a single GPU, so the full model
can be effectively trained in about 40 minutes.

In terms of independent feature sets, our PE meta-
data features perform best, with close to 87% of mal-
ware binaries unseen in training detected at a 0.1% false
positive rate. Our string features also perform quite

Table 1. Estimated TPR at 0.1% FPR and AUC,
for the corresponding plots in Fig. 4

Features TPR AUC
A. All 95.2% 0.99964
B. PE Import 22.8% 0.95785
C. Byte/entropy 61.1% 0.99145
D. Metadata 86.7% 0.99912
E. Strings 68.8% 0.99581
F. All (Time Split) 67.7% 0.99794

well, with 69% of unseen malware detected at a 0.1%
false positive rate. While our byte-entropy features and
import features don’t perform as well as our PE meta-
data and string features, we found that they boost accu-
racy beyond what string and PE metadata features can
provide on their own.

0 1000 2000 3000 4000 5000 6000 7000
count

virus.win32.sality

trojan.msil.zapchast

trojan.win32.vbkrypt

trojan-downloader.win32.codecpack

trojan.msil.disfa

net-worm.win32.allaple

virus.win32.virut

trojan.win32.vilsel

trojan-psw.win32.kykymber

trojan-dropper.win32.fraudrop

trojan-downloader.win32.agent

packed.win32.krap

trojan.win32.genome

trojan.win32.agent

trojan-gamethief.win32.onlinegames

trojan.win32.jorik

trojan.win32.fakeav

trojan-dropper.win32.agent

worm.win32.vbna

trojan.win32.buzus

Figure 2. Counts of the top 20 malware families
in our experimental dataset.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Year

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

N
o
rm

a
liz
e
d
 c
o
u
n
t

Figure 3. Normalized histogram of compile
timestamps for our malware (left, red) and be-
nignware (right, teal) datasets based on the
Portable Executable compile timestamp field.

3.3. Expected Deployment Performance

One important question, if our classifier is to be de-
ployed, is how to relate the cross-validated ROC to the
expected performance in enterprise setting. To estimate
expected performance, we observed the number of pre-
viously unseen binaries that were detected for the en-
tire set of customers during a span of a few days. This
gave us an expected average of around 5 previously un-
seen executed binaries per endpoint, per day. For FPR
of 0.1%, this would result in about five false positives
per day, per 1000 endpoints, assuming our ROC curve
is an accurate estimate of actual performance. We have
confirmed this result by directly running our sensor on
incoming data (endpoint binaries and Jotti stream) over
several days, which yielded a similar performance es-
timate. Interestingly, some of the top false positives

0 50 100 150 200
Training epochs

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

A
re
a
 u
n
d
e
r
R
O
C

Figure 5. Plot showing the performance of
our full 1024 feature model, as a function of
training epochs, for each split of our cross-
validation experiment.

were anti-virus installers and dubious tools used by In-
vincea’s product development team.

3.4. Time Split Experiment

A shortcoming of the standard cross-validation ex-
periments is that they do not separate our ability to de-
tect slightly modified malware from our ability to detect
new malware toolkits and new versions of existing mal-
ware toolkits. That is because most unique malware bi-
naries, as defined by cryptographic checksums, are just
automatically generated copies of various metamorphic
malware designed to help it evade signature-based de-
tection.

Thus, to test our system’s ability to detect gen-
uinely new malware toolkits, or new malware versions,
we ran a time split experiment that better estimates
our system’s ability to detect new malware toolkits and
new versions of existing malware toolkits. We first ex-
tracted the compile timestamp field from each binary
executable in our dataset. Next we excluded binaries
that had compile timestamps after July 31st , 2015 (the
date on which the experiment was run) and binaries with
compile timestamps before January 1st, 2000, since for
those malware samples the authors have blatantly tam-
pered with malware binaries’ compile timestamps or the
file is corrupted. Finally, we split our test data into two
sets: a set of binaries with compile timestamps before
July 31st, 2014, and the set of binaries on or after July
31st, 2014. Then, we trained our neural network (us-
ing all of the features described above) on the earlier
dataset and tested on the later dataset. While we can-
not completely trust that malware authors do not often
modify the compile timestamps on their binaries, there

is little motivation for doing so, and the distribution of
dates matches what we know about our dataset sources,
supporting that hypothesis.

The results of this experiment, as shown in Fig.
4F, demonstrate that our system performs substantially
worse on this test, detecting 67.7% of malware at a
0.1% FPR, and approaching a 100% detection rate at
a 1% FPR. The substantial degradation in performance
is not surprising given the difficulty of detecting gen-
uinely novel malware programs versus detecting mal-
ware samples that are new instances of known mali-
cious platforms and toolkits. This result suggests that
the classifier should be updated often using new data in
order to main it’s classification accuracy. This, however,
can be done rapidly and cheaply for a neural network
classifier.

4. Related Work

Malware detection has evolved over the past sev-
eral years, due to the increasingly growing threat posed
by malware to large corporations and governmental
agencies. Traditionally, the two major approaches for
malware detection can be roughly split based on the ap-
proach that is used to analyze the malware, either static
and dynamic analysis (see review [11]). In static analy-
sis the malware file, or set of files, are either directly an-
alyzed in binary form, or additionally unpacked and/or
decompiled into assembly representation. In dynamic
analysis, the binary files are executed, and the actions
are recorded through hooking or some access into inter-
nals of the virtualization environment.

In principle, dynamic detection can provide direct
observation of malware action, is less vulnerable to ob-
fuscation [28], and makes it harder to recycle existing
malware. However, in practice, automated execution of
software is difficult, since malware can detect if it is
running in a sandbox, and prevent itself from perform-
ing malicious behavior. This resulted in an arms race
between dynamic behavior detectors using a sandbox
and malware [1, 13]. Further, in a significant number of
cases, malware simply does not execute properly, due
to missing dependencies or unexpected system config-
uration. These issues make it difficult to collect a large
clean dataset of malware behavior.

Static analysis, on the other hand, while vulnera-
ble to obfuscation, does not require elaborate or expen-
sive setup for collection, and very large datasets can be
created by simply aggregating the binaries files. Ac-
curate labels can be computed for all these files using
anti-virus aggregator sites like VirusTotal [3].

This makes static analysis very amenable for ma-
chine learning approaches, which tends to perform bet-

ter as data size increases [5]. Machine learning has been
applied to malware detection at least since [23], with
numerous approaches since (see reviews [11, 16]). Ma-
chine learning consists of two parts, the feature engi-
neering, where the author transforms the input binary
into a set of features, and a learning algorithm, which
builds a classifier using these features.

Numerous static features have been proposed for
extracting features from binaries: printable strings [29],
import tables [31], byten-grams [4], opcodes [31], in-
formational entropy [31]. Assortment of features have
also been suggested during the Kaggle Microsoft Mal-
ware Classification Challenge [2], such as opcode im-
ages, various decompiled assembly features, and aggre-
gate statistics. However, we are not aware of any pub-
lished methods that break the file into subsamples (e.g.,
using sliding windows), and creates a histogram of all
the file’s subsamples based on two or more properties
of the individual subsample.

Potentially the feature space can become large, in
those cases methods like locality-sensitive hashing [20,
6], feature hashing (aka hashing “trick”) [32, 21], or
random projections [22, 20, 14, 10] have been used in
malware detection.

The large number of features, even after dimen-
sionality reduction, can cause scalability issues for
some machine learning algorithms. For example, non-
linear SVM kernels requireO(N2) multiplication dur-
ing each iteration of the optimizer, whereN is the num-
ber of samples [15].k-Nearest Neighbors (k-NN) re-
quires findingk closest neighbors in a potentially large
database of high dimensional data, during prediction,
which requires significant computation and storage of
all label samples.

One popular alternative to the above are ensemble
of trees (boosted trees or bagged trees), which can scale
fairly efficiently by subsampling the feature space dur-
ing each iterations [9]. Decision trees can adapt well
to various data types, and are resilient to heterogeneous
scales of values in feature vectors, so they exhibit good
performance even without some type of data standard-
ization. However, standard implementations typically
do not allow incremental learning, and fitting the full
dataset with large number of features could potentially
require expensive hardware.

Recently, neural networks have emerged as a scal-
able alternative to the standard machine learning ap-
proaches, due to significant advances in training algo-
rithms [33, 26]. Neural networks have been previously
used in malware detection [23, 10, 7], though it is not
clear how to compare results, since datasets are differ-
ent, in addition to the various pre-filtering of samples
that is done before evaluation.

5. Conclusion

In this paper we introduced a deep learning based
malware detection approach that achieves a detection
rate of 95% and a false positive rate of 0.1% over an
experimental dataset of over 400,000 software binaries.
Additionally, we have shown that our approach requires
modest computation to perform feature extraction and
that it can achieve good accuracy over our corpus on a
single GPU within modest timeframes.

We believe that the layered approach of deep neural
networks and our two dimensional histogram features
provide an implicit categorization of binary types, al-
lowing us to directly train on all the binaries, without
separating them based on internal features, like packer
types, and so on.

Neural networks also have several properties that
make them good candidates for malware detection.
First, they can allow incremental learning, thus, not
only can they be training in batches, but they can re-
trained efficiently (even on an hourly or daily basis),
as new training data is collected. Second, they allow
us to combine labeled and unlabeled data, through pre-
training of individual layers [19]. Third, the classi-
fiers are very compact, so prediction can be done very
quickly using low amounts of memory.

Further attesting to the value of our approach, our
system has proven a crucial part of our company’s over-
all malware detection and prevention product and has
been deployed to our cloud security analytics platform,
which is currently performing detection on files stream-
ing from thousands of customer endpoints.

6. Software and Data

The feature extraction code, data matrix, the label
vector, and the neural network code is available at
https://github.com/konstantinberlin/
Malware-Detection-Using-Two-
Dimensional-Binary-Program-Features.

7. Acknowledgement

We would like to thank Aaron Liu at Invincea
Inc. for providing crucial engineering support over the
course of this research. We also thank the Invincea
Labs data science team, including Alex Long, David
Slater, Giacomo Bergamo, James Gentile, Matt John-
son, and Robert Gove, for their feedback as this work
progressed.

References

[1] Anubis. https://anubis.iseclab.org/.
[2] Kaggle: Microsoft malware classification challenge.

https://www.kaggle.com/c/malware-
classification.

[3] VirusTotal. hhttps://www.virtualbox.org.
[4] T. Abou-Assaleh, N. Cercone, V. Kešelj, and R. Swei-

dan. N-gram-based detection of new malicious code. In
Computer Software and Applications Conference, 2004.
COMPSAC 2004. Proceedings of the 28th Annual Inter-
national, volume 2, pages 41–42. IEEE, 2004.

[5] M. Banko and E. Brill. Scaling to very very large
corpora for natural language disambiguation. InPro-
ceedings of the 39th Annual Meeting on Association
for Computational Linguistics, pages 26–33. Associa-
tion for Computational Linguistics, 2001.

[6] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,
and E. Kirda. Scalable, behavior-based malware cluster-
ing. In NDSS, volume 9, pages 8–11. Citeseer, 2009.

[7] R. Benchea and D. T. Gavriluţ. Combining restricted
boltzmann machine and one side perceptron for malware
detection. InGraph-Based Representation and Reason-
ing, pages 93–103. Springer, 2014.

[8] Y. Bengio, Y. LeCun, et al. Scaling learning algorithms
towards ai.Large-scale kernel machines, 34(5), 2007.

[9] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[10] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-
scale malware classification using random projections
and neural networks. InAcoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Confer-
ence on, pages 3422–3426. IEEE, 2013.

[11] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey
on automated dynamic malware-analysis techniques and
tools. ACM Computing Surveys, 44(2):6, 2012.

[12] V. A. Epanechnikov. Non-parametric estimation of a
multivariate probability density.Theory of Probability
& Its Applications, 14(1):153–158, 1969.

[13] D. Fleck, A. Tokhtabayev, A. Alarif, A. Stavrou, and
T. Nykodym. Pytrigger: A system to trigger & extract
user-activated malware behavior. InProceedings of the
2013 International Conference on Availability, Reliabil-
ity and Security, pages 92–101. IEEE, 2013.

[14] D. Fradkin and D. Madigan. Experiments with ran-
dom projections for machine learning. InProceedings
of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 517–522.
ACM, 2003.

[15] J. Friedman, T. Hastie, and R. Tibshirani.The elements
of statistical learning, volume 1. Springer series in
statistics Springer, Berlin, 2001.

[16] E. Gandotra, D. Bansal, and S. Sofat. Malware analy-
sis and classification: A survey.Journal of Information
Security, 5(02):56, 2014.

[17] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. InInterna-
tional conference on artificial intelligence and statistics,

pages 249–256, 2010.
[18] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on im-
agenet classification.arXiv preprint arXiv:1502.01852,
2015.

[19] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learn-
ing algorithm for deep belief nets.Neural computation,
18(7):1527–1554, 2006.

[20] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613. ACM, 1998.

[21] J. Jang, D. Brumley, and S. Venkataraman. Bitshred:
feature hashing malware for scalable triage and semantic
analysis. InProceedings of the 18th ACM conference
on Computer and communications security, pages 309–
320. ACM, 2011.

[22] W. B. Johnson and J. Lindenstrauss. Extensions of lip-
schitz mappings into a hilbert space.Contemporary
mathematics, 26(189-206):1, 1984.

[23] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess,
G. J. Tesauro, S. R. White, and T. Watson. Biologically
inspired defenses against computer viruses. InIJCAI
(1), pages 985–996, 1995.

[24] D. Kingma and J. Ba. Adam: A method for stochastic
optimization.arXiv preprint arXiv:1412.6980, 2014.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pages 1097–1105, 2012.

[26] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[27] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier non-
linearities improve neural network acoustic models. In
Proc. ICML, volume 30, 2013.

[28] A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. InProceedings of the
23rd Computer Security Applications Conference, pages
421–430, 2007.

[29] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo.
Data mining methods for detection of new malicious ex-
ecutables. InSecurity and Privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE Symposium on, pages 38–49.
IEEE, 2001.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to pre-
vent neural networks from overfitting.The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[31] M. Weber, M. Schmid, M. Schatz, and D. Geyer. A
toolkit for detecting and analyzing malicious software.
In Computer Security Applications Conference, 2002.
Proceedings. 18th Annual, pages 423–431. IEEE, 2002.

[32] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and
J. Attenberg. Feature hashing for large scale multitask
learning. InProceedings of the 26th Annual Interna-
tional Conference on Machine Learning, pages 1113–
1120. ACM, 2009.

[33] S. Woźniak, A.-D. Almási, V. Cristea, Y. Leblebici, and

T. Engbersen. Review of advances in neural networks:
Neural design technology stack. InProceedings of ELM-
2014 Volume 1, pages 367–376. Springer, 2015.

	1 Introduction
	2 Method
	2.1 Feature Engineering
	2.1.1 Byte/Entropy Histogram Features
	2.1.2 PE Import Features
	2.1.3 PE Metadata Features
	2.1.4 Aggregation of Feature Types
	2.1.5 Labeling

	2.2 Neural Network
	2.2.1 Design
	2.2.2 Preventing Overfitting
	2.2.3 Speeding Up Learning
	2.2.4 Formal Description

	2.3 Bayesian Calibration
	2.3.1 Threat Score
	2.3.2 Probability Density Function Estimation

	3 Evaluation
	3.1 Dataset
	3.2 Cross-Validation Experiment
	3.3 Expected Deployment Performance
	3.4 Time Split Experiment

	4 Related Work
	5 Conclusion
	6 Software and Data
	7 Acknowledgement

